Tag Archives: conveyor chains belt

China wholesaler Chain Wheel Transmission Belt Industrial Automatic Gear Box Conveyor Parts Roller Chains Sprocket Wheel Gear

Product Description

SPROCKET  1/2” X 5/16”  08B SERIES SPROCKETS
 

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 13.0mm
Radius Width C 1.3mm
Tooth Width b1 7.0mm
Tooth Width B1 7.2mm
Tooth Width B2 21.0mm
Tooth Width B3 34.9mm
08B SERIES ROLLER CHAINS  
Pitch 12.7 mm
Internal Width 7.75 mm
Roller Diameter 8.51 mm

 

 

Z de dp SIMPLEX DUPLEX TRIPLEX
D1 D2 D3
8 37.2  33.18  8 10 10
9 41.0  37.13  8 10 10
10 45.2  41.10  8 10 10
11 48.7  45.07  10 10 12
12 53.0  49.07  10 10 12
13 57.4  53.06  10 10 12
14 61.8  57.07  10 10 12
15 65.5  61.09  10 10 12
16 69.5  65.10  10 12 16
17 73.6  69.11  10 12 16
18 77.8  73.14  10 12 16
19 81.7  77.16  10 12 16
20 85.8  81.19  10 12 16
21 89.7  85.22  12 16 16
22 93.8  89.24  12 16 16
23 98.2  93.27  12 16 16
24 101.8  97.29  12 16 16
25 105.8  101.33  12 16 16
26 110.0  105.36  16 16 16
27 114.0  109.40  16 16 16
28 118.0  113.42  16 16 16
29 122.0  117.46  16 16 16
30 126.1  121.50  16 16 16
31 130.2  125.54  16 16 20
32 134.3  129.56  16 16 20
33 138.4  133.60  16 16 20
34 142.6  137.64  16 16 20
35 146.7  141.68  16 16 20
36 151.0  145.72  16 20 20
37 154.6  149.76  16 20 20
38 158.6  153.80  16 20 20
39 162.7  157.83  16 20 20
40 166.8  161.87  16 20 20
41 171.4  165.91  20 20 25
42 175.4  169.94  20 20 25
43 179.7  173.98  20 20 25
44 183.8  178.02  20 20 25
45 188.0  182.07  20 20 25
46 192.1  186.10  20 20 25
47 196.2  190.14  20 20 25
48 200.3  194.18  20 20 25
49 204.3  198.22  20 20 25
50 208.3  202.26  20 20 25
51 212.1  206.30  20 25 25
52 216.1  210.34  20 25 25
53 220.2  214.37  20 25 25
54 224.1  218.43  20 25 25
55 228.1  222.46  20 25 25
56 232.2  226.50  20 25 25
57 236.4  230.54  20 25 25
58 240.5  234.58  20 25 25
59 244.5  238.62  20 25 25
60 248.6  242.66  20 25 25
62 256.9  250.74  25 25 25
64 265.1  258.82  25 25 25
65 269.0  262.86  25 25 25
66 273.0  266.91  25 25 25
68 281.0  274.99  25 25 25
70 289.0  283.07  25 25 25
72 297.2  291.15  25 25 25
75 309.2  303.28  25 25 25
76 313.2  307.32  25 25 25
78 321.4  315.40  25 25 25
80 329.4  323.49  25 25 25
85 349.0  343.69  25 25 25
90 369.9  363.90  25 25 25
95 390.1  384.11  25 25 25
100 410.3  404.32  25 25 25
110 450.7  444.74  25 25 25
114 466.9  460.91  25 25 25
120 491.2  485.16  25 25 25
125 511.3  505.37  25 25 25

BASIC INFO.

Type:

Simplex, Duplex, Triplex

Sprocket Model:

3/8″,1/2″,5/8″,3/4″,1″,1.25″,1.50″,1.75″,2.00″,2.25″,2.00″,2.25″,2.50″, 3″

Teeth Number:

9-100

Standard:

ANSI , JIS, DIN, ISO

Material:

1571, 1045, SS304 , SS316;  As Per User Request.

Performance Treatment:

Carburizing, High Frequency Treatment, Hardening and Tempering, Nitriding

Surface Treatment:

Black of Oxidation, Zincing, Nickelage.

Characteristic Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order

Certification:

ISO9001 SGS

Quality Inspection:

Self-check and Final-check

Sample:

ODM&OEM, Trial Order Available and Welcome

Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 10 days for samples. 15 days for official order.

 

INSTALLATION AND USING

The chain spocket, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces  parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.

NOTICE

When fitting new chainwheels it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.

It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.

During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
 

FOR CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 
 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Nonstandard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface, Hardened Tooth Surface
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

sprocket gear

What safety precautions should be taken when working with sprocket gear assemblies?

Working with sprocket gear assemblies requires adherence to safety guidelines to prevent accidents and injuries. Here are the safety precautions that should be taken:

1. Proper Training: Ensure that all personnel involved in working with sprocket gear assemblies are adequately trained in handling and operating the equipment. Training should cover safety procedures, potential hazards, and proper use of tools.

2. Wear Personal Protective Equipment (PPE): Always wear appropriate PPE, including safety glasses, gloves, and steel-toed boots when working with sprocket gear assemblies. This will protect against any flying debris or accidental contact with moving parts.

3. Lockout/Tagout (LOTO): Before performing any maintenance or inspection on sprocket gear assemblies, follow lockout/tagout procedures to isolate the equipment from its power source. This prevents accidental startup while someone is working on or near the gears.

4. Guarding: Ensure that all sprocket gear assemblies are properly guarded to prevent access to moving parts. Guards should be in place and well-maintained at all times.

5. Inspect Gears Regularly: Regularly inspect sprocket gears for signs of wear, damage, or misalignment. Address any issues promptly to prevent potential hazards.

6. Avoid Loose Clothing and Jewelry: Avoid wearing loose clothing, jewelry, or anything that could get caught in the gears. Tie back long hair to prevent entanglement.

7. Use the Right Tools: Always use the correct tools for the job when working with sprocket gear assemblies. Using improper tools can cause damage to the gears or pose safety risks.

8. Keep the Work Area Clean: Maintain a clean work area around the sprocket gear assembly to prevent slips, trips, and falls. Remove any debris or obstructions that could cause accidents.

9. Monitor Operating Conditions: Keep an eye on the operating conditions of the sprocket gear assembly. If you notice any unusual noises, vibrations, or performance issues, shut down the equipment immediately for inspection and repair.

10. Follow Manufacturer’s Instructions: Adhere to the manufacturer’s guidelines and recommendations for the installation, operation, and maintenance of the sprocket gear assembly.

11. Stay Alert and Focused: Always remain attentive and focused when working with sprocket gear assemblies. Avoid distractions to prevent accidents.

12. Seek Professional Help: If you are unsure about any aspect of working with sprocket gear assemblies, seek assistance from a qualified professional or supervisor.

By following these safety precautions, you can create a safer working environment and reduce the risk of accidents when dealing with sprocket gear assemblies.

sprocket gear

What are the best practices for cleaning and maintaining sprocket gears?

Proper cleaning and maintenance are essential for ensuring the longevity and efficient performance of sprocket gears. Here are the best practices for cleaning and maintaining sprocket gears:

1. Regular Inspection: Conduct routine visual inspections to check for signs of wear, damage, or misalignment. Detecting and addressing issues early can prevent further damage and extend the sprocket gear’s lifespan.

2. Cleaning: Clean the sprocket gears regularly to remove dirt, debris, and contaminants that can accelerate wear. Use a soft brush or cloth to clean the sprocket teeth and the surrounding areas.

3. Avoid Harsh Chemicals: When cleaning sprocket gears, avoid using harsh chemicals or solvents that can damage the surface finish or compromise the material’s integrity. Stick to recommended cleaning agents by the manufacturer.

4. Lubrication: Proper lubrication is crucial to reducing friction and wear between the sprocket teeth and the chain. Use high-quality lubricants suitable for the specific application and follow the manufacturer’s recommendations for lubrication intervals.

5. Correct Tension: Maintain the correct chain tension to prevent excessive wear on both the sprocket and the chain. Ensure the chain is not too loose or too tight, as both conditions can cause premature wear.

6. Alignment: Check and maintain proper alignment between the sprocket gear and the chain. Misalignment can cause uneven wear and premature failure.

7. Material Selection: Choose sprocket gears made from high-quality and durable materials that are suitable for the specific operating conditions of the application.

8. Overload Prevention: Operate sprocket gears within their recommended load-carrying capacity to prevent premature wear and failure.

9. Temperature Considerations: Be mindful of the operating temperature range of the sprocket gear material. Extreme temperatures can affect the material’s properties and lead to accelerated wear.

10. Regular Maintenance: Establish a regular maintenance schedule to inspect, clean, and lubricate the sprocket gears. Replace any worn or damaged components promptly.

By following these best practices for cleaning and maintaining sprocket gears, you can maximize their lifespan, reduce downtime, and optimize the performance of mechanical systems that utilize them.

sprocket gear

What are the common problems faced with sprocket gears and how to troubleshoot them?

Sprocket gears, like any mechanical components, can encounter various issues during their operation. Some common problems and their troubleshooting approaches are as follows:

  • 1. Excessive Wear: Over time, sprocket gears may wear down due to friction and load. This can lead to poor performance and affect the overall efficiency of the system.
  • Troubleshooting: Regularly inspect the sprocket gears for signs of wear. If wear is detected, consider replacing the worn-out gears with new ones. Lubrication can also help reduce wear and prolong the lifespan of the gears.
  • 2. Misalignment: Improper alignment between the sprocket gear and the chain or other components can cause uneven wear and noise.
  • Troubleshooting: Check the alignment of the sprocket gear with the chain or other mating components. Adjust and realign the gears if necessary to ensure proper alignment.
  • 3. Chain Skipping: Chain skipping occurs when the chain fails to engage properly with the sprocket teeth, causing jerky motion and potential damage to the chain.
  • Troubleshooting: Check for any misalignment or excessive wear that may be causing the chain to skip. Replace any worn-out components and ensure proper tension in the chain to prevent skipping.
  • 4. Noise and Vibration: Excessive noise and vibration during operation can indicate issues with the sprocket gear system.
  • Troubleshooting: Inspect the gears for wear, misalignment, or damage that could be causing the noise and vibration. Proper lubrication and alignment can often help reduce noise and vibration levels.
  • 5. Fatigue Failure: Sprocket gears can fail due to material fatigue, especially if subjected to high loads and stress.
  • Troubleshooting: Select sprocket gears made from high-quality materials and appropriate strength to handle the application’s load. Regularly inspect for signs of fatigue, such as cracks or deformations, and replace any compromised gears.

It is essential to perform regular maintenance, including lubrication, alignment checks, and visual inspections, to prevent and address these common issues. Early detection and timely troubleshooting can significantly extend the lifespan and performance of sprocket gears in a mechanical system.

China wholesaler Chain Wheel Transmission Belt Industrial Automatic Gear Box Conveyor Parts Roller Chains Sprocket Wheel Gear  China wholesaler Chain Wheel Transmission Belt Industrial Automatic Gear Box Conveyor Parts Roller Chains Sprocket Wheel Gear
editor by CX 2024-01-15

China Standard Transmission Belt Gearbox Parts Conveyor Mining Machinery DIN8187 Driving Chains Specification Standard Chain Sprockets Single Wheel Spur Gear

Product Description

SPROCKET  1/2” X 5/16”  08B SERIES SPROCKETS
 

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 13.0mm
Radius Width C 1.3mm
Tooth Width b1 7.0mm
Tooth Width B1 7.2mm
Tooth Width B2 21.0mm
Tooth Width B3 34.9mm
08B SERIES ROLLER CHAINS  
Pitch 12.7 mm
Internal Width 7.75 mm
Roller Diameter 8.51 mm

 

 

Z de dp SIMPLEX DUPLEX TRIPLEX
D1 D2 D3
8 37.2  33.18  8 10 10
9 41.0  37.13  8 10 10
10 45.2  41.10  8 10 10
11 48.7  45.07  10 10 12
12 53.0  49.07  10 10 12
13 57.4  53.06  10 10 12
14 61.8  57.07  10 10 12
15 65.5  61.09  10 10 12
16 69.5  65.10  10 12 16
17 73.6  69.11  10 12 16
18 77.8  73.14  10 12 16
19 81.7  77.16  10 12 16
20 85.8  81.19  10 12 16
21 89.7  85.22  12 16 16
22 93.8  89.24  12 16 16
23 98.2  93.27  12 16 16
24 101.8  97.29  12 16 16
25 105.8  101.33  12 16 16
26 110.0  105.36  16 16 16
27 114.0  109.40  16 16 16
28 118.0  113.42  16 16 16
29 122.0  117.46  16 16 16
30 126.1  121.50  16 16 16
31 130.2  125.54  16 16 20
32 134.3  129.56  16 16 20
33 138.4  133.60  16 16 20
34 142.6  137.64  16 16 20
35 146.7  141.68  16 16 20
36 151.0  145.72  16 20 20
37 154.6  149.76  16 20 20
38 158.6  153.80  16 20 20
39 162.7  157.83  16 20 20
40 166.8  161.87  16 20 20
41 171.4  165.91  20 20 25
42 175.4  169.94  20 20 25
43 179.7  173.98  20 20 25
44 183.8  178.02  20 20 25
45 188.0  182.07  20 20 25
46 192.1  186.10  20 20 25
47 196.2  190.14  20 20 25
48 200.3  194.18  20 20 25
49 204.3  198.22  20 20 25
50 208.3  202.26  20 20 25
51 212.1  206.30  20 25 25
52 216.1  210.34  20 25 25
53 220.2  214.37  20 25 25
54 224.1  218.43  20 25 25
55 228.1  222.46  20 25 25
56 232.2  226.50  20 25 25
57 236.4  230.54  20 25 25
58 240.5  234.58  20 25 25
59 244.5  238.62  20 25 25
60 248.6  242.66  20 25 25
62 256.9  250.74  25 25 25
64 265.1  258.82  25 25 25
65 269.0  262.86  25 25 25
66 273.0  266.91  25 25 25
68 281.0  274.99  25 25 25
70 289.0  283.07  25 25 25
72 297.2  291.15  25 25 25
75 309.2  303.28  25 25 25
76 313.2  307.32  25 25 25
78 321.4  315.40  25 25 25
80 329.4  323.49  25 25 25
85 349.0  343.69  25 25 25
90 369.9  363.90  25 25 25
95 390.1  384.11  25 25 25
100 410.3  404.32  25 25 25
110 450.7  444.74  25 25 25
114 466.9  460.91  25 25 25
120 491.2  485.16  25 25 25
125 511.3  505.37  25 25 25

BASIC INFO.

Type:

Simplex, Duplex, Triplex

Sprocket Model:

3/8″,1/2″,5/8″,3/4″,1″,1.25″,1.50″,1.75″,2.00″,2.25″,2.00″,2.25″,2.50″, 3″

Teeth Number:

9-100

Standard:

ANSI , JIS, DIN, ISO

Material:

1571, 1045, SS304 , SS316;  As Per User Request.

Performance Treatment:

Carburizing, High Frequency Treatment, Hardening and Tempering, Nitriding

Surface Treatment:

Black of Oxidation, Zincing, Nickelage.

Characteristic Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order

Certification:

ISO9001 SGS

Quality Inspection:

Self-check and Final-check

Sample:

ODM&OEM, Trial Order Available and Welcome

Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 10 days for samples. 15 days for official order.

 

INSTALLATION AND USING

The chain spocket, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces  parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.

NOTICE

When fitting new chainwheels it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.

It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.

During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
 

FOR CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 
 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Mining Machinery, Sugar Machinery
Hardness: Hardened Tooth Surface, Hardened Tooth Surface
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

sprocket gear

Can sprocket gears be used for vertical power transmission?

Yes, sprocket gears can be used for vertical power transmission in certain applications. Vertical power transmission involves transferring rotational power between two shafts that are oriented vertically, with one shaft positioned above the other. In such cases, sprocket gears, also known as chain sprockets when used with chains, can offer an efficient and reliable solution for transmitting power.

The main advantage of using sprocket gears for vertical power transmission is their ability to maintain a positive engagement with the chain, ensuring a consistent and smooth transfer of power. This positive engagement is particularly beneficial in vertical applications where gravity can potentially cause other types of gears, such as spur gears or bevel gears, to disengage or produce excessive wear.

Sprocket gears are commonly employed in vertical power transmission systems in various industries, including manufacturing, material handling, and construction. Examples of vertical power transmission applications using sprocket gears include:

1. Vertical Conveyor Systems: Sprocket gears, in combination with conveyor chains, are often used to transport materials vertically between different levels of a facility.

2. Elevators: Sprocket gears and chains are utilized in elevator systems to lift and lower the elevator car in buildings or industrial settings.

3. Vertical Lifts: Sprocket gears play a crucial role in vertical lift systems that move heavy loads between floors or levels.

4. Agricultural Equipment: Sprocket gears are used in vertical power transmission systems of agricultural machinery, such as grain elevators.

When implementing sprocket gears for vertical power transmission, it is essential to consider the load, speed, torque requirements, and system dynamics to ensure safe and efficient operation. Additionally, proper lubrication and regular maintenance are crucial for maximizing the lifespan and performance of the sprocket gear system.

Overall, sprocket gears offer a reliable and versatile solution for vertical power transmission, making them a popular choice in numerous industrial and commercial applications.

sprocket gear

Can sprocket gears be used in precision motion control systems?

Yes, sprocket gears can be used in precision motion control systems, but there are some considerations to keep in mind. Precision motion control systems require high accuracy, repeatability, and low backlash to achieve precise positioning and movement. Sprocket gears can meet these requirements under certain conditions:

1. Quality Manufacturing: To ensure precision, sprocket gears used in motion control systems must be of high quality and precision-manufactured. They should have accurate tooth profiles and minimal manufacturing defects.

2. Tight Tolerances: Precision motion control systems require sprocket gears with tight tolerances to minimize variations in tooth engagement. This ensures consistent motion and positioning.

3. Low Backlash: Backlash is the amount of clearance between engaged teeth, and it can cause positioning errors in motion control systems. High-quality sprocket gears with proper installation and alignment can help reduce backlash.

4. Proper Lubrication: Lubrication is critical for reducing friction and wear in precision motion control systems. Using the right lubricant in the right amount is essential for smooth and accurate operation.

5. Alignment and Maintenance: Proper alignment during installation and regular maintenance are crucial for preserving the precision of the sprocket gear system. Misalignment or wear can compromise the system’s accuracy.

It’s important to select sprocket gears that match the specific requirements of the motion control application. While sprocket gears can work well in precision motion control systems, some applications may benefit from other types of gearing systems, such as gear racks or timing belts, depending on the complexity and demands of the motion control task.

Before integrating sprocket gears into a precision motion control system, it’s advisable to consult with engineers or experts familiar with both the application’s requirements and the capabilities of sprocket gear systems. This will ensure that the selected gearing solution is optimized for precision and reliability in the motion control application.

sprocket gear

How do you select the right size and pitch of a sprocket gear for a specific application?

Choosing the correct size and pitch of a sprocket gear is crucial to ensure optimal performance and efficiency in a specific application. Here’s a step-by-step guide to help you make the right selection:

  1. Identify the Application Requirements: Understand the specific requirements of your application, including the desired speed, torque, power transmission, and operating conditions.
  2. Calculate the Gear Ratio: Determine the gear ratio required for your application. The gear ratio is the ratio of the number of teeth between the driving and driven sprockets and determines the speed and torque relationship between them.
  3. Consider the Pitch: The pitch of a sprocket refers to the distance between the centers of adjacent teeth. It is essential to choose sprockets with the same pitch as the chain or belt you plan to use in your transmission system.
  4. Choose the Number of Teeth: Once you have the gear ratio and pitch, calculate the number of teeth for both the driving and driven sprockets. The number of teeth affects the speed and torque characteristics of the transmission system.
  5. Verify Shaft Compatibility: Ensure that the sprocket gear’s bore size matches the diameter of your application’s input and output shafts.
  6. Consider Material and Strength: Select sprocket gears made from materials suitable for your application’s operating conditions. For heavy-duty applications, choose sprockets with high strength and wear resistance.
  7. Check Center Distance: Verify the center distance between the driving and driven sprockets to ensure proper chain or belt tension and alignment.
  8. Review Manufacturer Recommendations: Manufacturers often provide guidelines and specifications for their sprocket gears. Review their recommendations and consult with experts if necessary.
  9. Perform Regular Maintenance: Once the sprocket gear is installed, conduct regular maintenance, including lubrication and inspection, to ensure longevity and optimal performance.

Choosing the right size and pitch of a sprocket gear requires careful consideration of various factors to meet the specific needs of your application. By following these steps and consulting with experts when needed, you can select the most suitable sprocket gear for your mechanical system.

China Standard Transmission Belt Gearbox Parts Conveyor Mining Machinery DIN8187 Driving Chains Specification Standard Chain Sprockets Single Wheel Spur Gear  China Standard Transmission Belt Gearbox Parts Conveyor Mining Machinery DIN8187 Driving Chains Specification Standard Chain Sprockets Single Wheel Spur Gear
editor by CX 2023-12-28

China Good quality Transmission Belt Gearbox Parts Conveyor Mining Machinery DIN8187 Driving Chains Specification Standard Chain Sprockets Single Wheel Spur Gear

Product Description

SPROCKET  1/2” X 5/16”  08B SERIES SPROCKETS
 

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 13.0mm
Radius Width C 1.3mm
Tooth Width b1 7.0mm
Tooth Width B1 7.2mm
Tooth Width B2 21.0mm
Tooth Width B3 34.9mm
08B SERIES ROLLER CHAINS  
Pitch 12.7 mm
Internal Width 7.75 mm
Roller Diameter 8.51 mm

 

 

Z de dp SIMPLEX DUPLEX TRIPLEX
D1 D2 D3
8 37.2  33.18  8 10 10
9 41.0  37.13  8 10 10
10 45.2  41.10  8 10 10
11 48.7  45.07  10 10 12
12 53.0  49.07  10 10 12
13 57.4  53.06  10 10 12
14 61.8  57.07  10 10 12
15 65.5  61.09  10 10 12
16 69.5  65.10  10 12 16
17 73.6  69.11  10 12 16
18 77.8  73.14  10 12 16
19 81.7  77.16  10 12 16
20 85.8  81.19  10 12 16
21 89.7  85.22  12 16 16
22 93.8  89.24  12 16 16
23 98.2  93.27  12 16 16
24 101.8  97.29  12 16 16
25 105.8  101.33  12 16 16
26 110.0  105.36  16 16 16
27 114.0  109.40  16 16 16
28 118.0  113.42  16 16 16
29 122.0  117.46  16 16 16
30 126.1  121.50  16 16 16
31 130.2  125.54  16 16 20
32 134.3  129.56  16 16 20
33 138.4  133.60  16 16 20
34 142.6  137.64  16 16 20
35 146.7  141.68  16 16 20
36 151.0  145.72  16 20 20
37 154.6  149.76  16 20 20
38 158.6  153.80  16 20 20
39 162.7  157.83  16 20 20
40 166.8  161.87  16 20 20
41 171.4  165.91  20 20 25
42 175.4  169.94  20 20 25
43 179.7  173.98  20 20 25
44 183.8  178.02  20 20 25
45 188.0  182.07  20 20 25
46 192.1  186.10  20 20 25
47 196.2  190.14  20 20 25
48 200.3  194.18  20 20 25
49 204.3  198.22  20 20 25
50 208.3  202.26  20 20 25
51 212.1  206.30  20 25 25
52 216.1  210.34  20 25 25
53 220.2  214.37  20 25 25
54 224.1  218.43  20 25 25
55 228.1  222.46  20 25 25
56 232.2  226.50  20 25 25
57 236.4  230.54  20 25 25
58 240.5  234.58  20 25 25
59 244.5  238.62  20 25 25
60 248.6  242.66  20 25 25
62 256.9  250.74  25 25 25
64 265.1  258.82  25 25 25
65 269.0  262.86  25 25 25
66 273.0  266.91  25 25 25
68 281.0  274.99  25 25 25
70 289.0  283.07  25 25 25
72 297.2  291.15  25 25 25
75 309.2  303.28  25 25 25
76 313.2  307.32  25 25 25
78 321.4  315.40  25 25 25
80 329.4  323.49  25 25 25
85 349.0  343.69  25 25 25
90 369.9  363.90  25 25 25
95 390.1  384.11  25 25 25
100 410.3  404.32  25 25 25
110 450.7  444.74  25 25 25
114 466.9  460.91  25 25 25
120 491.2  485.16  25 25 25
125 511.3  505.37  25 25 25

BASIC INFO.

Type:

Simplex, Duplex, Triplex

Sprocket Model:

3/8″,1/2″,5/8″,3/4″,1″,1.25″,1.50″,1.75″,2.00″,2.25″,2.00″,2.25″,2.50″, 3″

Teeth Number:

9-100

Standard:

ANSI , JIS, DIN, ISO

Material:

1571, 1045, SS304 , SS316;  As Per User Request.

Performance Treatment:

Carburizing, High Frequency Treatment, Hardening and Tempering, Nitriding

Surface Treatment:

Black of Oxidation, Zincing, Nickelage.

Characteristic Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order

Certification:

ISO9001 SGS

Quality Inspection:

Self-check and Final-check

Sample:

ODM&OEM, Trial Order Available and Welcome

Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 10 days for samples. 15 days for official order.

 

INSTALLATION AND USING

The chain spocket, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces  parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.

NOTICE

When fitting new chainwheels it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.

It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.

During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
 

FOR CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 
 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Mining Machinery, Sugar Machinery
Hardness: Hardened Tooth Surface, Hardened Tooth Surface
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

sprocket gear

Can sprocket gears be used for vertical power transmission?

Yes, sprocket gears can be used for vertical power transmission in certain applications. Vertical power transmission involves transferring rotational power between two shafts that are oriented vertically, with one shaft positioned above the other. In such cases, sprocket gears, also known as chain sprockets when used with chains, can offer an efficient and reliable solution for transmitting power.

The main advantage of using sprocket gears for vertical power transmission is their ability to maintain a positive engagement with the chain, ensuring a consistent and smooth transfer of power. This positive engagement is particularly beneficial in vertical applications where gravity can potentially cause other types of gears, such as spur gears or bevel gears, to disengage or produce excessive wear.

Sprocket gears are commonly employed in vertical power transmission systems in various industries, including manufacturing, material handling, and construction. Examples of vertical power transmission applications using sprocket gears include:

1. Vertical Conveyor Systems: Sprocket gears, in combination with conveyor chains, are often used to transport materials vertically between different levels of a facility.

2. Elevators: Sprocket gears and chains are utilized in elevator systems to lift and lower the elevator car in buildings or industrial settings.

3. Vertical Lifts: Sprocket gears play a crucial role in vertical lift systems that move heavy loads between floors or levels.

4. Agricultural Equipment: Sprocket gears are used in vertical power transmission systems of agricultural machinery, such as grain elevators.

When implementing sprocket gears for vertical power transmission, it is essential to consider the load, speed, torque requirements, and system dynamics to ensure safe and efficient operation. Additionally, proper lubrication and regular maintenance are crucial for maximizing the lifespan and performance of the sprocket gear system.

Overall, sprocket gears offer a reliable and versatile solution for vertical power transmission, making them a popular choice in numerous industrial and commercial applications.

sprocket gear

What are the load-carrying capacities of different sprocket gear configurations?

Load-carrying capacity is a critical factor to consider when selecting a sprocket gear configuration for a specific application. The load-carrying capacity of a sprocket gear depends on various factors, including the material and design of the sprocket, the size and number of teeth, and the type of chain used in conjunction with the sprocket.

Here are some factors that influence the load-carrying capacities of different sprocket gear configurations:

1. Material: The choice of material significantly impacts the load-carrying capacity of the sprocket gear. High-strength materials, such as hardened steel or alloy materials, are often used for heavy-duty applications, as they can withstand higher loads without deformation or failure.

2. Number of Teeth: Sprocket gears with more teeth typically distribute the load over a larger surface area, which can improve their load-carrying capacity. However, an increase in the number of teeth may also lead to higher friction losses in the system.

3. Tooth Profile: The shape of the sprocket gear teeth, such as standard or modified tooth profiles, can affect the load distribution and efficiency of the gear system.

4. Chain Type: The type of chain used with the sprocket gear is crucial in determining the overall load-carrying capacity of the system. Different chain designs, such as roller chains or silent chains, have varying load-carrying capabilities.

It is essential to consult the manufacturer’s specifications and engineering data when determining the load-carrying capacity of a particular sprocket gear configuration. Additionally, factors like the speed of operation, environmental conditions, and duty cycle should also be considered to ensure the sprocket gear is appropriately sized for the application.

In heavy-duty and high-load applications, engineers often conduct detailed calculations and simulations to ensure the sprocket gear system can handle the required loads safely and reliably. Proper maintenance and periodic inspections are essential to preserve the load-carrying capacity and extend the life of the sprocket gear system.

sprocket gear

How do you select the right size and pitch of a sprocket gear for a specific application?

Choosing the correct size and pitch of a sprocket gear is crucial to ensure optimal performance and efficiency in a specific application. Here’s a step-by-step guide to help you make the right selection:

  1. Identify the Application Requirements: Understand the specific requirements of your application, including the desired speed, torque, power transmission, and operating conditions.
  2. Calculate the Gear Ratio: Determine the gear ratio required for your application. The gear ratio is the ratio of the number of teeth between the driving and driven sprockets and determines the speed and torque relationship between them.
  3. Consider the Pitch: The pitch of a sprocket refers to the distance between the centers of adjacent teeth. It is essential to choose sprockets with the same pitch as the chain or belt you plan to use in your transmission system.
  4. Choose the Number of Teeth: Once you have the gear ratio and pitch, calculate the number of teeth for both the driving and driven sprockets. The number of teeth affects the speed and torque characteristics of the transmission system.
  5. Verify Shaft Compatibility: Ensure that the sprocket gear’s bore size matches the diameter of your application’s input and output shafts.
  6. Consider Material and Strength: Select sprocket gears made from materials suitable for your application’s operating conditions. For heavy-duty applications, choose sprockets with high strength and wear resistance.
  7. Check Center Distance: Verify the center distance between the driving and driven sprockets to ensure proper chain or belt tension and alignment.
  8. Review Manufacturer Recommendations: Manufacturers often provide guidelines and specifications for their sprocket gears. Review their recommendations and consult with experts if necessary.
  9. Perform Regular Maintenance: Once the sprocket gear is installed, conduct regular maintenance, including lubrication and inspection, to ensure longevity and optimal performance.

Choosing the right size and pitch of a sprocket gear requires careful consideration of various factors to meet the specific needs of your application. By following these steps and consulting with experts when needed, you can select the most suitable sprocket gear for your mechanical system.

China Good quality Transmission Belt Gearbox Parts Conveyor Mining Machinery DIN8187 Driving Chains Specification Standard Chain Sprockets Single Wheel Spur Gear  China Good quality Transmission Belt Gearbox Parts Conveyor Mining Machinery DIN8187 Driving Chains Specification Standard Chain Sprockets Single Wheel Spur Gear
editor by CX 2023-12-07

China Professional Chain Wheel Gearbox Belt Transmission Conveyor Parts Short Pitch Precision Roller Chains Sprocket Steel Gear

Product Description

SPROCKET  5/8” X 3/8”  10B SERIES SPROCKETS
 

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 16.0mm
Radius Width C 1.6mm
Tooth Width b1 9.0mm
Tooth Width B1 9.1mm
Tooth Width B2 25.5mm
Tooth Width B3 42.1mm
10B SERIES ROLLER CHAINS  
Pitch 15.875 mm
Internal Width 9.65 mm
Roller Diameter 10.16 mm

 

 

Z de dp SIMPLEX DUPLEX TRIPLEX
dm D1 A dm D2 A dm D3 A
8 47.0 41.48 25 10 25 25 12 40 25 12 55
9 52.6 46.42 30 10 25 30 12 40 30 12 55
10 57.5 51.37 35 10 25 35 12 40 35 12 55
11 63.0 56.34 37 12 30 39 14 40 39 16 55
12 68.0 61.34 42 12 30 44 14 40 44 16 55
13 73.0 66.32 47 12 30 49 14 40 49 16 55
14 78.0 71.34 52 12 30 54 14 40 54 16 55
15 83.0 76.36 57 12 30 59 14 40 59 16 55
16 88.0 81.37 60 12 30 64 16 45 64 16 60
17 93.0 86.39 60 12 30 69 16 45 69 16 60
18 98.3 91.42 70 14 30 74 16 45 74 16 60
19 103.3 96.45 70 14 30 79 16 45 79 16 60
20 108.4 101.49 75 14 30 84 16 45 84 16 60
21 113.4 106.52 75 16 30 85 16 45 85 20 60
22 118.0 111.55 80 16 30 90 16 45 90 20 60
23 123.5 116.58 80 16 30 95 16 45 95 20 60
24 128.3 121.62 80 16 30 100 16 45 100 20 60
25 134.0 126.66 80 16 30 105 16 45 105 20 60
26 139.0 131.70 85 20 35 110 20 45 110 20 60
27 144.0 136.75 85 20 35 110 20 45 110 20 60
28 148.7 141.78 90 20 35 115 20 45 115 20 60
29 153.8 146.83 90 20 35 115 20 45 115 20 60
30 158.8 151.87 90 20 35 120 20 45 120 20 60
31 163.9 156.92 95 20 35 120 20 45 120 20 60
32 168.9 161.95 95 20 35 120 20 45 120 20 60
33 174.5 167.00 95 20 35 120 20 45 120 20 60
34 179.0 172.05 95 20 35 120 20 45 120 20 60
35 184.1 177.10 95 20 35 120 20 45 120 20 60
36 189.1 182.15 100 20 35 120 20 45 120 25 60
37 194.2 187.20 100 20 35 120 20 45 120 25 60
38 199.2 192.24 100 20 35 120 20 45 120 25 60
39 204.2 197.29 100 20 35 120 20 45 120 25 60
40 209.3 202.34 100 20 35 120 20 45 120 25 60
41 214.8 207.38 *100 20 40 120 20 50 *130 25 60
42 2,199 212.43 *100 20 40 120 20 50 *130 25 60
43 224.9 217.48 *100 20 40 120 20 50 *130 25 60
44 230.0 222.53 *100 20 40 120 20 50 *130 25 60
45 235.0 227.58 *100 20 40 *120 20 50 *130 25 60
46 240.1 232.63 *100 20 40 *120 20 50 *130 25 60
47 245.1 237.68 *100 20 40 *120 20 50 *130 25 60
48 250.2 242.73 *100 20 40 *120 20 50 *130 25 60
49 255.2 247.78 *100 20 40 *120 20 50 *130 25 60
50 260.3 252.82 *100 20 40 *120 20 50 *130 25 60
51 265.3 257.87 *100 20 40 *120 20 50 *130 25 60
52 270.4 262.92 *100 20 40 *120 20 50 *130 25 60
53 275.4 267.97 *100 20 40 *120 20 50 *130 25 60
54 280.5 273.03 *100 20 40 *120 20 50 *130 25 60
55 285.5 278.08 *100 20 40 *120 20 50 *130 25 60
56 290.6 283.13 *100 20 40 *120 20 50 *130 25 60
57 296.0 288.18 *100 20 40 *120 20 50 *130 25 60
58 300.7 293.23 *100 20 43 *120 20 57 *130 25 64
59 305.7 298.28 *100 20 43 *120 20 57 *130 25 64
60 310.8 303.33 *100 20 43 *120 20 57 *130 25 64
62 321.4 313.43 *100 20 43 *120 20 57 *130 25 64
64 331.5 323.53 *100 20 43 *120 20 57 *130 25 67
65 336.5 328.58 *100 20 43 *120 20 57 *130 25 67
66 341.6 333.64 *100 20 43 *120 20 57 *130 25 67
68 351.7 343.74 *100 20 43 *120 20 57 *130 25 67
70 361.8 353.84 *100 20 43 *120 20 57 *130 25 67
72 371.9 363.94 *100 20 43 *120 20 57 *130 25 67
75 387.1 379.10 *100 20 43 *120 20 57 *130 25 67
76 392.1 384.15 *100 20 43 *120 20 57 *130 25 67
78 402.2 394.25 *100 20 43 *120 20 57 *130 25 67
80 412.3 404.36 *100 20 43 *130 20 57 *130 25 67
85 437.6 429.62 *100 20 50 *130 20 58 *130 25 67
90 462.8 454.88 *100 20 50 *130 20 58 *130 25 67
95 488.5 480.14 *100 20 50 *130 20 58 *130 25 67
100 513.4 505.40 *100 20 50 *130 20 58 *130 25 67
110 563.9 555.92 *100 20 50 *130 20 58 *130 25 67
114 584.1 576.13 *100 20 50 *130 20 58 *130 25 67
120 614.4 606.45 *100 20 50 *130 20 58 *130 25 67
125 639.7 631.51 *100 20 50 *130 20 58 *130 25 67

Notice: *welding hub

BASIC INFO.
 

Product name  DIN ISO Standard Sprocket for Roller Chain
Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: C45, 45Mn, 42CrMo, 20CrMo, etc
3. OEM according to your request
Surface Treatment Heat treatment, Quenching treatment, High frequency normalizing treatment, Polishing, Electrophoresis paint processing, Anodic oxidation treatment, etc
Characteristic Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Size Customer Drawings & ISO standard 
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 20 days for samples. 45 days for official order.

INSTALLATION AND USING

The chain  spoket, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces  parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.

NOTICE

When fitting new chainwheels it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.

It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.

During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
 

FOR CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

Standard Or Nonstandard: Standard, Nonstandard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Motor, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Rolling Gear, Cut Gear
Toothed Portion Shape: Spur Gear
Material: 1045, Stainless Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

sprocket gear

What safety precautions should be taken when working with sprocket gear assemblies?

Working with sprocket gear assemblies requires adherence to safety guidelines to prevent accidents and injuries. Here are the safety precautions that should be taken:

1. Proper Training: Ensure that all personnel involved in working with sprocket gear assemblies are adequately trained in handling and operating the equipment. Training should cover safety procedures, potential hazards, and proper use of tools.

2. Wear Personal Protective Equipment (PPE): Always wear appropriate PPE, including safety glasses, gloves, and steel-toed boots when working with sprocket gear assemblies. This will protect against any flying debris or accidental contact with moving parts.

3. Lockout/Tagout (LOTO): Before performing any maintenance or inspection on sprocket gear assemblies, follow lockout/tagout procedures to isolate the equipment from its power source. This prevents accidental startup while someone is working on or near the gears.

4. Guarding: Ensure that all sprocket gear assemblies are properly guarded to prevent access to moving parts. Guards should be in place and well-maintained at all times.

5. Inspect Gears Regularly: Regularly inspect sprocket gears for signs of wear, damage, or misalignment. Address any issues promptly to prevent potential hazards.

6. Avoid Loose Clothing and Jewelry: Avoid wearing loose clothing, jewelry, or anything that could get caught in the gears. Tie back long hair to prevent entanglement.

7. Use the Right Tools: Always use the correct tools for the job when working with sprocket gear assemblies. Using improper tools can cause damage to the gears or pose safety risks.

8. Keep the Work Area Clean: Maintain a clean work area around the sprocket gear assembly to prevent slips, trips, and falls. Remove any debris or obstructions that could cause accidents.

9. Monitor Operating Conditions: Keep an eye on the operating conditions of the sprocket gear assembly. If you notice any unusual noises, vibrations, or performance issues, shut down the equipment immediately for inspection and repair.

10. Follow Manufacturer’s Instructions: Adhere to the manufacturer’s guidelines and recommendations for the installation, operation, and maintenance of the sprocket gear assembly.

11. Stay Alert and Focused: Always remain attentive and focused when working with sprocket gear assemblies. Avoid distractions to prevent accidents.

12. Seek Professional Help: If you are unsure about any aspect of working with sprocket gear assemblies, seek assistance from a qualified professional or supervisor.

By following these safety precautions, you can create a safer working environment and reduce the risk of accidents when dealing with sprocket gear assemblies.

sprocket gear

How do I prevent chain elongation in a sprocket gear system?

Preventing chain elongation is essential to maintain the efficiency and longevity of a sprocket gear system. Chain elongation occurs over time due to wear and stretch in the chain, leading to a change in pitch length and improper engagement with the sprocket teeth. Here are some measures to prevent chain elongation:

1. Proper Lubrication: Regular and adequate lubrication of the chain is crucial to reduce friction and wear between the chain’s components. Lubricants also help prevent corrosion and reduce the chances of chain elongation.

2. Correct Tension: Maintaining the correct chain tension is vital to prevent excessive stress and elongation. Too much tension can accelerate wear, while too little tension can lead to slippage and increased elongation. Follow the manufacturer’s guidelines for proper tensioning.

3. Quality Chain: Invest in high-quality chains that are designed to resist elongation and offer better wear resistance. High-strength chains with heat-treated components are more resistant to elongation.

4. Proper Alignment: Ensure the sprockets are properly aligned to minimize lateral forces on the chain. Misalignment can cause uneven wear and accelerated elongation.

5. Regular Inspection: Perform routine inspections of the sprocket gear system to check for signs of wear, elongation, or any other issues. Address any problems promptly to prevent further damage.

6. Replace Worn Components: As the chain and sprockets wear over time, replace them when they reach their wear limits. Continuing to use worn components can accelerate elongation and lead to premature failure.

7. Avoid Overloading: Operating the sprocket gear system within its designed load capacity will help minimize stress on the chain, reducing the chances of elongation.

8. Environmental Considerations: In harsh or abrasive environments, protective measures like covers or guards can help prevent contaminants from accelerating chain wear and elongation.

By implementing these preventive measures, you can significantly reduce the risk of chain elongation and ensure a longer and more reliable service life for your sprocket gear system.

sprocket gear

Can sprocket gears be used in high-temperature environments?

Yes, sprocket gears can be used in high-temperature environments, but the selection of materials and lubricants is crucial to ensure their proper functioning and longevity.

High-temperature environments can pose several challenges to sprocket gears, including:

  • Material Integrity: Sprocket gears must be made from materials that can withstand the elevated temperatures without losing their mechanical properties. Standard carbon steels may not be suitable for high-temperature applications as they can undergo thermal degradation.
  • Lubrication: The lubricants used for sprocket gears in high-temperature environments should have a high temperature resistance to maintain proper lubrication and prevent wear. Conventional lubricants may break down or evaporate at high temperatures.
  • Thermal Expansion: High temperatures can cause materials to expand, which may affect the clearances and tolerances between the sprocket gear teeth and other components, leading to misalignment or binding issues.

To address these challenges, sprocket gears in high-temperature environments are typically made from heat-resistant materials, such as alloy steels or stainless steels. These materials can retain their mechanical strength and resist deformation at elevated temperatures.

Additionally, special high-temperature lubricants, such as synthetic oils or greases, are used to ensure adequate lubrication and reduce friction and wear in the sprocket gear system.

Proper design considerations are essential when using sprocket gears in high-temperature environments. Engineers must account for thermal expansion effects and provide sufficient clearances to accommodate the temperature-induced dimensional changes.

In summary, with the right choice of materials, lubricants, and design considerations, sprocket gears can effectively and reliably operate in high-temperature environments, making them suitable for various industrial applications where elevated temperatures are encountered.

China Professional Chain Wheel Gearbox Belt Transmission Conveyor Parts Short Pitch Precision Roller Chains Sprocket Steel Gear  China Professional Chain Wheel Gearbox Belt Transmission Conveyor Parts Short Pitch Precision Roller Chains Sprocket Steel Gear
editor by CX 2023-08-15

China Automatic Transmission Belt Gearbox Parts General Duty Conveyor Roller Chains Custom CNC Machining Steel Sprocket bike chain sprocket

Item Description

SPROCKET  5/8” X 3/8”  10B Sequence SPROCKETS
 

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 sixteen.0mm
Radius Width C one.6mm
Tooth Width b1 9.0mm
Tooth Width B1 9.1mm
Tooth Width B2 25.5mm
Tooth Width B3 42.1mm
10B Sequence ROLLER CHAINS  
Pitch fifteen.875 mm
Internal Width nine.sixty five mm
Roller Diameter ten.16 mm

 

Z de dp SIMPLEX DUPLEX TRIPLEX
D1 D2 D3
8 forty seven. forty one.48 10 ten 12
9 52.six forty six.forty two ten ten twelve
ten 57.5 51.37 ten ten twelve
11 63. 56.34 10 10 12
twelve 68. 61.34 10 10 12
thirteen 73. sixty six.32 ten ten twelve
fourteen seventy eight. 71.34 ten ten twelve
fifteen eighty three. 76.36 ten ten twelve
sixteen 88. 81.37 twelve 12 16
seventeen ninety three. 86.39 twelve twelve 16
18 98.3 ninety one.42 12 12 sixteen
19 103.3 96.45 12 12 16
20 108.4 101.49 twelve twelve 16
21 113.4 106.52 12 16 16
22 118. 111.fifty five twelve sixteen sixteen
23 123.5 116.58 12 16 16
24 128.three 121.sixty two 12 sixteen sixteen
25 134. 126.66 12 16 sixteen
26 139. 131.70 16 sixteen 20
27 one hundred forty four. 136.75 16 16 20
28 148.7 141.seventy eight sixteen sixteen twenty
29 153.eight 146.83 16 16 twenty
30 158.8 151.87 sixteen 16 twenty
31 163.9 156.ninety two sixteen twenty twenty
32 168.9 161.ninety five 16 20 20
33 174.5 167.00 16 20 twenty
34 179. 172.05 sixteen 20 20
35 184.one 177.ten 16 twenty 20
36 189.one 182.15 twenty 20 twenty five
37 194.two 187.20 twenty 20 twenty five
38 199.2 192.24 20 20 25
39 204.2 197.29 twenty 20 25
40 209.3 202.34 twenty 20 25
41 214.8 207.38 twenty twenty 25
forty two two,199 212.43 twenty twenty 25
forty three 224.nine 217.forty eight 20 20 twenty five
44 230. 222.53 twenty twenty twenty five
45 235. 227.58 20 twenty 25
46 240.one 232.63 20 25 25
forty seven 245.1 237.sixty eight twenty 25 twenty five
48 250.two 242.73 20 twenty five 25
49 255.2 247.78 20 twenty five 25
fifty 260.3 252.82 20 twenty five 25
51 265.3 257.87 twenty 25 twenty five
52 270.4 262.ninety two 20 25 25
53 275.4 267.ninety seven 20 25 twenty five
54 280.5 273.03 20 twenty five twenty five
55 285.5 278.08 20 25 twenty five
56 290.6 283.13 twenty five twenty five twenty five
57 296. 288.eighteen twenty five twenty five twenty five
fifty eight three hundred.7 293.23 twenty five twenty five 25
fifty nine 305.seven 298.28 twenty five twenty five twenty five
60 310.8 303.33 twenty five twenty five twenty five
sixty two 321.four 313.43 25 twenty five thirty
64 331.five 323.fifty three 25 twenty five thirty
65 336.5 328.58 twenty five 25 thirty
sixty six 341.6 333.sixty four 25 25 thirty
sixty eight 351.seven 343.74 25 25 thirty
70 361.eight 353.eighty four 25 25 30
seventy two 371.9 363.94 twenty five 25 thirty
seventy five 387.1 379.10 twenty five twenty five thirty
76 392.1 384.fifteen twenty five 25 30
78 402.two 394.twenty five 25 25 thirty
eighty 412.three 404.36 25 25 thirty
85 437.six 429.sixty two 25 30 30
90 462.eight 454.88 25 thirty thirty
95 488.five 480.fourteen twenty five thirty 30
one hundred 513.4 505.forty twenty five thirty thirty
110 563.nine 555.ninety two 25 30 thirty
114 584.one 576.13 twenty five 30 30
120 614.4 606.45 25 thirty 30
one hundred twenty five 639.seven 631.fifty one twenty five 30 30

Fundamental Info.
 

Product name  DIN ISO Regular Sprocket for Roller Chain
Materials Available  one. Stainless Steel: SS304, SS316, and so on
2. Alloy Steel: C45, 45Mn, 42CrMo, 20CrMo, and so forth
three. OEM according to your request
Floor Therapy Heat therapy, Quenching treatment, Substantial frequency normalizing treatment method, Sprucing, Electrophoresis paint processing, Anodic oxidation therapy, and many others
Attribute Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, and so on
Design criterion ISO DIN ANSI & Client Drawings
Dimensions Consumer Drawings & ISO standard 
Software Industrial transmission products
Bundle Picket Scenario / Container and pallet, or created-to-buy
Certification ISO9001: 2008 
Gain Good quality 1st, Provider 1st, Competitive price tag, Rapidly shipping
Shipping and delivery Time 20 days for samples. 45 days for official order.

Installation AND Employing

The chain spoket, as a generate or deflection for chains, has pockets to hold the chain links with a D-profile cross segment with flat facet surfaces  parallel to the centre aircraft of the chain backlinks, and outer surfaces at correct angles to the chain link centre plane. The chain links are pressed firmly in opposition to the outer surfaces and every single of the aspect surfaces by the angled laying surfaces at the foundation of the pockets, and also the help surfaces of the wheel human body with each other with the end sides of the webs fashioned by the foremost and trailing partitions of the pocket.

Recognize

When fitting new chainwheels it is really critical that a new chain is equipped at the same time, and vice versa. Employing an previous chain with new sprockets, or a new chain with outdated sprockets will trigger quick put on.

It is essential if you are setting up the chainwheels oneself to have the factory service manual specific to your model. Our chainwheels are created to be a direct replacement for your OEM chainwheels and as this kind of, the set up should be carried out in accordance to your designs service guide.

In the course of use a chain will stretch (i.e. the pins will use triggering extension of the chain). Making use of a chain which has been stretched more than the earlier mentioned optimum allowance brings about the chain to experience up the teeth of the sprocket. This leads to hurt to the guidelines of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely by way of the best of the tooth, instead than the whole tooth. This results in significant wearing of the chainwheel.
 

FOR CHAIN STHangZhouRDS

Requirements corporations (this kind of as ANSI and ISO) keep expectations for layout, dimensions, and interchangeability of transmission chains. For illustration, the subsequent Table displays info from ANSI common B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Culture of Mechanical Engineers (ASME). See the references[8][9][10] for additional data.

ASME/ANSI B29.1-2011 Roller Chain Regular SizesSizePitchMaximum Roller DiameterMinimum Supreme Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Dimensions
Size Pitch Highest Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 .250 in (6.35 mm) .a hundred thirty in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 .375 in (9.fifty three mm) .two hundred in (5.08 mm) one,760 lb (800 kg) eighteen lb (8.2 kg)
forty one .five hundred in (twelve.70 mm) .306 in (7.seventy seven mm) one,500 lb (680 kg) eighteen lb (8.2 kg)
forty .five hundred in (twelve.70 mm) .312 in (7.ninety two mm) three,a hundred twenty five lb (1,417 kg) 31 lb (fourteen kg)
fifty .625 in (fifteen.88 mm) .400 in (10.sixteen mm) four,880 lb (2,210 kg) forty nine lb (22 kg)
60 .750 in (19.05 mm) .469 in (eleven.ninety one mm) seven,030 lb (3,a hundred ninety kg) 70 lb (32 kg)
eighty 1.000 in (25.40 mm) .625 in (15.88 mm) twelve,500 lb (5,seven-hundred kg) 125 lb (57 kg)
a hundred one.250 in (31.seventy five mm) .750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.ten mm) .875 in (22.23 mm) 28,a hundred twenty five lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (forty four.forty five mm) 1.000 in (25.forty mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
one hundred sixty two.000 in (fifty.80 mm) 1.one hundred twenty five in (28.fifty eight mm) fifty,000 lb (23,000 kg) 500 lb (230 kg)
a hundred and eighty two.250 in (57.15 mm) 1.460 in (37.08 mm) sixty three,280 lb (28,seven hundred kg) 633 lb (287 kg)
200 two.500 in (sixty three.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (seventy six.twenty mm) one.875 in (forty seven.63 mm) 112,500 lb (51,000 kg) one,000 lb (450 kg

For mnemonic reasons, below is another presentation of important proportions from the exact same common, expressed in fractions of an inch (which was component of the pondering guiding the decision of chosen numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI normal
chain quantity
Width (inches)
one4 28 25 18
three8 38 three5 three16
12 4eight four1 1four
1two foureight four 516
5eight fiveeight five 38
threefour 68 6 12
one eighteight 8 58

Notes:
one. The pitch is the length between roller centers. The width is the distance in between the hyperlink plates (i.e. a bit much more than the roller width to let for clearance).
two. The appropriate-hand digit of the common denotes 0 = regular chain, 1 = light-weight chain, 5 = rollerless bushing chain.
3. The still left-hand digit denotes the number of eighths of an inch that make up the pitch.
four. An “H” subsequent the regular amount denotes heavyweight chain. A hyphenated quantity following the standard number denotes double-strand (2), triple-strand (3), and so on. As a result 60H-3 denotes number sixty heavyweight triple-strand chain.
 A standard bicycle chain (for derailleur gears) utilizes slim 1⁄2-inch-pitch chain. The width of the chain is variable, and does not influence the load potential. The far more sprockets at the rear wheel (historically 3-6, presently 7-12 sprockets), the narrower the chain. Chains are offered according to the quantity of speeds they are created to work with, for instance, “10 pace chain”. Hub gear or solitary speed bicycles use 1/2″ x 1/8″ chains, exactly where 1/8″ refers to the optimum thickness of a sprocket that can be utilised with the chain.

Usually chains with parallel shaped back links have an even quantity of hyperlinks, with each slim hyperlink followed by a broad a single. Chains created up with a uniform kind of hyperlink, narrow at 1 and wide at the other finish, can be created with an odd number of backlinks, which can be an gain to adapt to a special chainwheel-distance on the other aspect this kind of a chain tends to be not so powerful.

Roller chains manufactured using ISO standard are at times named as isochains.

 

WHY Choose US 

1. Trustworthy Top quality Assurance Program
two. Chopping-Edge Computer-Controlled CNC Devices
3. Bespoke Options from Highly Seasoned Specialists
four. Customization and OEM Accessible for Certain Application
five. In depth Inventory of Spare Parts and Accessories
6. Effectively-Created Throughout the world Marketing and advertising Community
seven. Successful Following-Sale Support System

 

The 219 sets of superior automatic production gear supply guarantees for high item high quality. The 167 engineers and specialists with senior specialist titles can style and build items to meet the precise demands of customers, and OEM customizations are also offered with us. Our audio worldwide service network can give buyers with well timed after-income specialized companies.

We are not just a producer and supplier, but also an business advisor. We perform pro-actively with you to offer professional tips and solution recommendations in buy to finish up with a most value successful solution obtainable for your certain application. The consumers we provide around the world variety from stop consumers to distributors and OEMs. Our OEM replacements can be substituted wherever needed and appropriate for both repair and new assemblies.

 

 

US $1.1
/ Piece
|
1,000 Pieces

(Min. Order)

###

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Rolling Gear, Cut Gear
Toothed Portion Shape: Spur Gear
Material: Q235, Brass, Alloy

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 16.0mm
Radius Width C 1.6mm
Tooth Width b1 9.0mm
Tooth Width B1 9.1mm
Tooth Width B2 25.5mm
Tooth Width B3 42.1mm
10B SERIES ROLLER CHAINS  
Pitch 15.875 mm
Internal Width 9.65 mm
Roller Diameter 10.16 mm

###

Z de dp SIMPLEX DUPLEX TRIPLEX
D1 D2 D3
8 47.0 41.48 10 10 12
9 52.6 46.42 10 10 12
10 57.5 51.37 10 10 12
11 63.0 56.34 10 10 12
12 68.0 61.34 10 10 12
13 73.0 66.32 10 10 12
14 78.0 71.34 10 10 12
15 83.0 76.36 10 10 12
16 88.0 81.37 12 12 16
17 93.0 86.39 12 12 16
18 98.3 91.42 12 12 16
19 103.3 96.45 12 12 16
20 108.4 101.49 12 12 16
21 113.4 106.52 12 16 16
22 118.0 111.55 12 16 16
23 123.5 116.58 12 16 16
24 128.3 121.62 12 16 16
25 134.0 126.66 12 16 16
26 139.0 131.70 16 16 20
27 144.0 136.75 16 16 20
28 148.7 141.78 16 16 20
29 153.8 146.83 16 16 20
30 158.8 151.87 16 16 20
31 163.9 156.92 16 20 20
32 168.9 161.95 16 20 20
33 174.5 167.00 16 20 20
34 179.0 172.05 16 20 20
35 184.1 177.10 16 20 20
36 189.1 182.15 20 20 25
37 194.2 187.20 20 20 25
38 199.2 192.24 20 20 25
39 204.2 197.29 20 20 25
40 209.3 202.34 20 20 25
41 214.8 207.38 20 20 25
42 2,199 212.43 20 20 25
43 224.9 217.48 20 20 25
44 230.0 222.53 20 20 25
45 235.0 227.58 20 20 25
46 240.1 232.63 20 25 25
47 245.1 237.68 20 25 25
48 250.2 242.73 20 25 25
49 255.2 247.78 20 25 25
50 260.3 252.82 20 25 25
51 265.3 257.87 20 25 25
52 270.4 262.92 20 25 25
53 275.4 267.97 20 25 25
54 280.5 273.03 20 25 25
55 285.5 278.08 20 25 25
56 290.6 283.13 25 25 25
57 296.0 288.18 25 25 25
58 300.7 293.23 25 25 25
59 305.7 298.28 25 25 25
60 310.8 303.33 25 25 25
62 321.4 313.43 25 25 30
64 331.5 323.53 25 25 30
65 336.5 328.58 25 25 30
66 341.6 333.64 25 25 30
68 351.7 343.74 25 25 30
70 361.8 353.84 25 25 30
72 371.9 363.94 25 25 30
75 387.1 379.10 25 25 30
76 392.1 384.15 25 25 30
78 402.2 394.25 25 25 30
80 412.3 404.36 25 25 30
85 437.6 429.62 25 30 30
90 462.8 454.88 25 30 30
95 488.5 480.14 25 30 30
100 513.4 505.40 25 30 30
110 563.9 555.92 25 30 30
114 584.1 576.13 25 30 30
120 614.4 606.45 25 30 30
125 639.7 631.51 25 30 30

###

Product name  DIN ISO Standard Sprocket for Roller Chain
Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: C45, 45Mn, 42CrMo, 20CrMo, etc
3. OEM according to your request
Surface Treatment Heat treatment, Quenching treatment, High frequency normalizing treatment, Polishing, Electrophoresis paint processing, Anodic oxidation treatment, etc
Characteristic Fire ResistantOil Resistant, Heat Resistant, Abrasive resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Size Customer Drawings & ISO standard 
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 20 days for samples. 45 days for official order.

###

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

###

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58
US $1.1
/ Piece
|
1,000 Pieces

(Min. Order)

###

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Rolling Gear, Cut Gear
Toothed Portion Shape: Spur Gear
Material: Q235, Brass, Alloy

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 16.0mm
Radius Width C 1.6mm
Tooth Width b1 9.0mm
Tooth Width B1 9.1mm
Tooth Width B2 25.5mm
Tooth Width B3 42.1mm
10B SERIES ROLLER CHAINS  
Pitch 15.875 mm
Internal Width 9.65 mm
Roller Diameter 10.16 mm

###

Z de dp SIMPLEX DUPLEX TRIPLEX
D1 D2 D3
8 47.0 41.48 10 10 12
9 52.6 46.42 10 10 12
10 57.5 51.37 10 10 12
11 63.0 56.34 10 10 12
12 68.0 61.34 10 10 12
13 73.0 66.32 10 10 12
14 78.0 71.34 10 10 12
15 83.0 76.36 10 10 12
16 88.0 81.37 12 12 16
17 93.0 86.39 12 12 16
18 98.3 91.42 12 12 16
19 103.3 96.45 12 12 16
20 108.4 101.49 12 12 16
21 113.4 106.52 12 16 16
22 118.0 111.55 12 16 16
23 123.5 116.58 12 16 16
24 128.3 121.62 12 16 16
25 134.0 126.66 12 16 16
26 139.0 131.70 16 16 20
27 144.0 136.75 16 16 20
28 148.7 141.78 16 16 20
29 153.8 146.83 16 16 20
30 158.8 151.87 16 16 20
31 163.9 156.92 16 20 20
32 168.9 161.95 16 20 20
33 174.5 167.00 16 20 20
34 179.0 172.05 16 20 20
35 184.1 177.10 16 20 20
36 189.1 182.15 20 20 25
37 194.2 187.20 20 20 25
38 199.2 192.24 20 20 25
39 204.2 197.29 20 20 25
40 209.3 202.34 20 20 25
41 214.8 207.38 20 20 25
42 2,199 212.43 20 20 25
43 224.9 217.48 20 20 25
44 230.0 222.53 20 20 25
45 235.0 227.58 20 20 25
46 240.1 232.63 20 25 25
47 245.1 237.68 20 25 25
48 250.2 242.73 20 25 25
49 255.2 247.78 20 25 25
50 260.3 252.82 20 25 25
51 265.3 257.87 20 25 25
52 270.4 262.92 20 25 25
53 275.4 267.97 20 25 25
54 280.5 273.03 20 25 25
55 285.5 278.08 20 25 25
56 290.6 283.13 25 25 25
57 296.0 288.18 25 25 25
58 300.7 293.23 25 25 25
59 305.7 298.28 25 25 25
60 310.8 303.33 25 25 25
62 321.4 313.43 25 25 30
64 331.5 323.53 25 25 30
65 336.5 328.58 25 25 30
66 341.6 333.64 25 25 30
68 351.7 343.74 25 25 30
70 361.8 353.84 25 25 30
72 371.9 363.94 25 25 30
75 387.1 379.10 25 25 30
76 392.1 384.15 25 25 30
78 402.2 394.25 25 25 30
80 412.3 404.36 25 25 30
85 437.6 429.62 25 30 30
90 462.8 454.88 25 30 30
95 488.5 480.14 25 30 30
100 513.4 505.40 25 30 30
110 563.9 555.92 25 30 30
114 584.1 576.13 25 30 30
120 614.4 606.45 25 30 30
125 639.7 631.51 25 30 30

###

Product name  DIN ISO Standard Sprocket for Roller Chain
Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: C45, 45Mn, 42CrMo, 20CrMo, etc
3. OEM according to your request
Surface Treatment Heat treatment, Quenching treatment, High frequency normalizing treatment, Polishing, Electrophoresis paint processing, Anodic oxidation treatment, etc
Characteristic Fire ResistantOil Resistant, Heat Resistant, Abrasive resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Size Customer Drawings & ISO standard 
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 20 days for samples. 45 days for official order.

###

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

###

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

What you need to know about sprockets

If you are interested in bicycles or mechanical parts, you may be interested in learning more about Sprockets. There are several types to choose from, each with their own advantages and disadvantages. Here are some details about the different types. Among other things, you may want to consider their spacing, holes and teeth.
sprocket

Various types of sprockets

There are several types of sprockets, each with their own advantages and disadvantages. Generally, sprockets are selected based on their pitch, which is the distance from the center of the needle roller to the sprocket teeth. These two factors are often used together to determine the speed ratio. For example, a 50-tooth drive sprocket produces a 2:1 reduction ratio.
A sprocket is a wheel that meshes with a chain or track to drive the machine. They are different from gears and are usually designed for a specific chain. Choosing the correct type of sprocket will ensure proper performance and minimize maintenance. The accompanying catalog provides specifications for each sprocket.
Sprockets come in many different designs. These include common bores and roller chains. They also have taper and split taper designs. They can also be made to order. Additionally, these sprockets are available with different mounting options. If you’re looking for a chain, you’ll also need to consider size and spacing.
Sprockets are often used in power transmission systems. They are used with roller chains and silent chains. They reduce speed in a similar way to gears. However, sprockets are designed with high friction surfaces that will wear out quickly unless lubricated. This is why sprockets are usually made of steel, although they can also be made of plastic.
The most common type of sprocket is the roller sprocket. This type of sprocket is commonly used in drivetrains because it runs on a series of pins and rollers that create play between the teeth of the sprocket. They have high tensile strength and are usually made of cast iron or graded stainless steel.
Another type of sprocket is the engineered sprocket, which is stronger and more durable than power transmission sprockets. They are also designed to replace worn teeth without removing the conveyor chain. So if you’re planning to buy a new sprocket, read the manual carefully and make sure you choose the one that best meets your needs.
Different types of sprockets have different pitches and sprocket lengths. For example, chains with large pitch diameters require sprockets with large teeth. Conversely, a chain with a shorter pitch will require smaller sprockets and smaller teeth. Likewise, the pitch of the sprocket and its bore also affects the size of the drive shaft. Knowing the diameter of the drive shaft before buying will ensure you choose the correct sprocket for the job at hand.
sprocket

teeth

There are many factors that determine the length and shape of a sprocket. The number of teeth on the sprocket is a consideration. The higher the number of teeth, the longer the life of the sprocket. Also, the higher the number, the better the wear resistance of the sprocket. Most sprockets have 17 teeth, but they can have more or less. Choosing the correct number of teeth for a sprocket will greatly increase the life of the sprocket and chain. The teeth are usually made of the same material as the sprockets, but there are some removable options as well. Another option is to harden the teeth of the sprocket, which will greatly increase the life of the sprocket. This process is often called induction hardening
While sprockets are sometimes made of metal, some are made of plastic or reinforced plastic. The design of the sprocket is similar to the design of the gear, but it is completely different. While they both have a wheel-like shape, the only difference between them is how they interact with different types of chains. In most cases, the sprocket and chain work together, similar to a bicycle chain assembly.
To determine the correct sprocket size, you need to know the size of the drive shaft, which will determine the size of the teeth. For example, a chain with a 3.5 pitch diameter needs a chainring with large teeth, while a chainring with a smaller pitch needs a chainring with small teeth. Pitch diameter or teeth per inch and bore (the hole through which the center of the sprocket passes through the drive shaft) are the two most important factors in determining sprocket size.

Hole

Each spring has two diameters – the shaft diameter and the spring bore. These measurements are important for spring assemblies and cavities. They usually hold a certain tolerance, depending on the customer’s tolerance requirements. Spring manufacturers typically design clearances according to standard manufacturing practices and recommend keeping bore and shaft diameters within a certain tolerance type.
sprocket

asphalt

Pitch is a property of a peak frequency that reflects its relative position in frequency space. The spacing of spikes can be measured using a method called neural coding. During this process, CF builds and indexes a series of single-fiber models. Each model predicts the rate response of the AN to any stimulus. These models have no free parameters and are used to find the excitation parameters that produce the most similar measurement curves.
In the past, baseball pitchers used spiked curves to throw harder knives. This type of curveball is similar to a fastball, but with a sharper hit. The resulting speed allows pitchers to throw harder knives. While it’s not a traditional curveball, it can help pitchers improve their QOP score by reducing the time it takes to complete a pitch.
In addition to estimating the pitch, these studies show that the phase relationship between the three harmonics has little effect on the pitch estimation for the pooled interval distribution. This finding is consistent with psychophysical observations of pitch-phase invariance. However, the phase relationship between unresolved and resolved harmonics may have a greater effect on pitch saliency.

China Automatic Transmission Belt Gearbox Parts General Duty Conveyor Roller Chains Custom CNC Machining Steel Sprocket     bike chain sprocketChina Automatic Transmission Belt Gearbox Parts General Duty Conveyor Roller Chains Custom CNC Machining Steel Sprocket     bike chain sprocket
editor by czh 2023-01-05